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Summary 
 
We analyze crash data collected by the Iowa Department of Transportation using 
Bayesian methods. The data set includes monthly crash numbers, estimated monthly 
traffic volumes, site length and other information collected at 30 paired sites in Iowa 
over more than 20 years during which an intervention experiment was set up. The 
intervention consisted in transforming 15 undivided road segments from four-lane to 
three lanes, while an additional 15 segments, thought to be comparable in terms of 
traffic safety-related characteristics were not converted. The main objective of this 
work is to find out whether the intervention reduces the number of crashes and the 
crash rates at the treated sites.  
 
We fitted a hierarchical Poisson regression model with a change-point to the number 
of monthly crashes per mile at each of the sites. Explanatory variables in the model 
included estimated monthly traffic volume, time, an indicator for intervention 
reflecting whether the site was a “treatment” or a “control” site, and various 
interactions. We accounted for seasonal effects in the number of crashes at a site by 
including smooth trigonometric functions with three different periods to reflect the 
four seasons of the year. A change-point at the month and year in which the 
intervention was completed for treated sites was also included.  
 
The number of crashes at a site can be thought to follow a Poisson distribution. To 
estimate the association between crashes and the explanatory variables, we used a log 
link function and added a random effect to account for overdispersion and for 
autocorrelation among observations obtained at the same site. We used proper but 
non-informative priors for all parameters in the model, and carried out all calculations 
using Markov chain Monte Carlo methods implemented in WinBUGS.  
 
We evaluated the effect of the four to three-lane conversion by comparing the 
expected number of crashes per year per mile during the years preceding the 
conversion and following the conversion for treatment and control sites. We estimated 
this difference using the observed traffic volumes at each site and also on a per 
100,000,000 vehicles. We also conducted a prospective analysis to forecast the 
expected number of crashes per mile at each site in the study one year, three years and 
five years following the four to three-lane conversion. Posterior predictive 
distributions of the number of crashes, the crash rate and the percent reduction in 
crashes per mile were obtained for each site for the months of January and June one, 
three and five years after completion of the intervention. 
 
The model appears to fit the data well. We found that in most sites, the intervention 
was effective and reduced the number of crashes. Overall, and for the observed traffic 
volumes, the reduction in the expected number of crashes per year and mile at 
converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the 
control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% 
probability).  When the reduction in the expected number of crashes per year, mile 
and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) 
and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both 
cases, the difference in the percent reduction in the expected number of crashes during 
the years following the conversion was significantly larger at converted sites than at 
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control sites, even though the number of crashes appears to decline over time at all 
sites. 
 
Results indicate that the reduction in the expected number of sites per mile has a 
steeper negative slope at converted than at control sites. Consistent with this, the 
forecasted reduction in the number of crashes per year and mile during the years after 
completion of the conversion at converted sites is more pronounced than at control 
sites. 
 
Seasonal effects on the number of crashes have been well-documented. In this dataset, 
we found that, as expected, the expected number of monthly crashes per mile tends to 
be higher during winter months than during the rest of the year. Perhaps more 
interestingly, we found that there is an interaction between the four to three-lane 
conversion and season; the reduction in the number of crashes appears to be more 
pronounced during months, when the weather is nice than during other times of the 
year, even though a reduction was estimated for the entire year.  Thus, it appears that 
the four to three-lane conversion, while effective year-round, is particularly effective 
in reducing the expected number of crashes in nice weather. 
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Chapter 1      Introduction 
 
1.1  Background 
 
Conversions of four-lane undivided roads into three lanes (two through lanes and a 
center turn lane) are often called as "ROAD DIETS". Figure 1 (Huang et al., 2002) 
shows how this carried out. 

 

 
 

Figure 1:  ROAD DIETS 
 
In real life, the fourth lane may be used for other purpose, like being converted into 
bicycle lanes, sidewalks, and/or on-street parking. In other words, road diets consist in 
reallocating the existing space, while leaving the overall area unchanged (Huang et al., 
2002) 
 
Under most average daily traffic (ADT) conditions tested, road diets have minimal 
effects on vehicle capacity, because left-turning vehicles are moved into a common 
two-way left-turn lane. However, if road diets are used for the roads with ADTs above 
approximately 20,000 vehicles, there is a high probability that traffic congestion will 
increase to the point of diverting traffic to alternate routes (Huang et al., 2002). 
 
As a matter of fact, road diets probably offer potential benefits to both vehicles and 
pedestrians. On a four-lane street, drivers change lanes to pass slower vehicles (such 
as vehicles stopped in the left lane waiting to make a left turn). In contrast, drivers' 
speeds on two-lane streets are limited by the speed of the lead vehicle. Thus, road 
diets may reduce vehicle speeds and vehicle interactions during lane changes, which 
potentially could reduce the number and severity of vehicle-to-vehicle crashes. 
Pedestrians may benefit because they have fewer lanes of traffic to cross, and because 
motor vehicles are likely to be moving more slowly (Huang et al., 2002).  
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Although road diet advocates enumerate these potential crash-related benefits, there 
has been limited research concerning such benefits. The project undertaken by the 
Iowa Department of Transportation is designed to help fill this gap, especially for the 
purpose of finding out whether four to three-lane conversions reduce the number of 
crashes or not. In this work, we use the term intervention to refer to road diets (the 
conversions of four-lane into three lanes) (Huang et al., 2002). 
 
This report is organized as follows. In Section 1.2 we describe some of the 
characteristics of the study sites. Chapter 2 includes the preliminary exploratory 
analysis conducted on the traffic safety data collected by the Iowa DOT between 1982 
and 2004 at the study sites. We use monthly crash data and monthly average daily 
traffic volumes (MADT) at the sites to compute the observed annual number of 
crashes per site and mile during the years preceding and following the intervention 
and also to compute the same annual totals but on a 100,000,000 AADT basis. The 
model that was used to estimate posterior distributions for the expected number of 
crashes per month and mile at each site is discussed in Section 2.2.  Results are 
presented in Section 3. We first present and interpret the posterior distributions of 
model parameters. We then estimate the expected number of crashes per site and mile 
during the years preceding and following the intervention. The same analysis is 
repeated, but standardizing all sites to an equal traffic volume of 100,000,000 AADT. 
In Section 4, we use the model to estimate the posterior distributions of the expected 
number of crashes at each study site and forecast crash frequency per mile and year at 
each site during the months of January and June one, three and five years after 
completion of the four to three lane conversion. Finally, we discuss our results in 
Section 5. The WinBUGS program and some of the output from the WinBUGS 
implementation are given in the Appendix. 
 
 
1.2  Data 
 
This study evaluated road diets at several locations in Iowa. The database was 
constructed by the Iowa Department of Transportation. Traffic safety information on 
two groups of sites (a treatment and a control group) was obtained over several years 
before and several years after the intervention. The road diets (i.e., treatment sites) 
were matched with four-lane streets that were deemed to be similar to the treatment 
sites but did not receive the intervention (i.e., comparison/control sites). Both the 
fifteen pairs of treated sites and control ones are distributed over twenty-six towns and 
cities in Iowa: Algona, Ames, Belmond, Blue Grass, Cedar Falls, Clear Lake, Council 
Bluffs, Des Moines, Glenwood, Harlan, Indianola, Iowa Falls, Jefferson, Lawton, Le 
Mars, Manchester, Mapleton, Mason City, Merrill, Norwalk, Osceola, Oskaloosa, 
Rock Rapids, Sioux Center, Sioux City, and Storm Lake.  The towns and cities vary 
greatly in population and thus in traffic volumes, but these differences were accounted 
for in the regression model.  
 
Some information about the location and the population of the 30 sites is given in 
Table 1. Because information on site 25, the match of treated site 8 was incomplete, 
we used site 22 as the match for both sites 5 and site 8. Thus, site 25 in the table 
paired to site 8 in the table is really site 22.And, CIPOP2000 represents the census  
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SID COUNTY CITYNAME LITERAL CIPOP 

2000 
ADT 
2000 

1 Buena Vista Storm Lake Iowa 7 from Lake Ave. to Lakeshore Dr. 10076 7503 
2 Cerro Gordo Clear Lake US 18 from N 16 st. W to N 8th St. 8161 10403 
3 Cerro Gordo Mason City Iowa 122 from West intersection of Birch 

Drive to a Driveway 
29172 7800 

4 Clarke Osceola US 34 from Corporate limits on east side 
to where highway divides to 4 lanes on 
west side 

4659 8172 

5 Delaware Manchester Iowa 13 from River St. to Butler St. 5257 9400 
6 Hardin Iowa Falls US 65 from City Limits - ? to Park Ave. 5193 10609 
7 Lyon Rock Rapids Iowa 9 from S Greene St. to Tama St. 2573 4766 
8 Mills Glenwood US 275 from MP 36.2 to MP 37.42 5358 6410 
9 Polk Des Moines Beaver Ave from Urbandale Ave. to 

Aurora Ave. 
198682 13695 

10 Pottawattamie Council Bluffs US 6 from McKenzie Ave. west 1300 ft. 58268 11000 
11 Scott Blue Grass Old US 61 from Oak Lane to 400' W of 

Terrace Drive 
1169 9155 

12 Sioux Sioux Center US 75 from 200' South of 10th St. S. to 
250' North of 9th St. NW 

6002 8942 

13 Warren Indianola Iowa 92 from South R St. to Jct. of US 
65/69 

12998 13288 

14 Woodbury Lawton US 20 from 100' east of Co. Rd. Eastland 
Ave. to 1130' West of Co. Rd. Emmet 
Ave. 

697 9237 

15 Woodbury Sioux City Transit Ave. from Vine Ave. to just west of 
Paxton St. at curve 

85013 9608 

18 Buena Vista Storm Lake Iowa 7 from Lake Ave. to Barton St 10076 8790 
19 Plymouth Le Mars US 75 from 0.01 miles north of 3rd St NW 

to 0.36 miles SW of 12th St SW 
9237 10880 

20 Black Hawk Cedar Falls Green Hill Road from 0.10 miles east of 
IA 58 to 0.09 miles west of Cedar Heights 
Dr. 

36145 2768 

21 Greene Jefferson Iowa 4 from National Ave to 0.13 miles 
north of 250th Ave 

4626 5685 

22 Shelby Harlan Iowa 44 from US 59 to 6th St 5282 6981 
23 Warren Norwalk Iowa 28 from 0.03 miles south of Gordon 

Ave to 0.04 miles south of North Ave 
6884 7679 

24 Wright Belmond US 69 from 0.38 miles north of Main St to 
0.58 miles south of Main St 

2560 3734 

25 Shelby Harlan Iowa 44 from US 59 to 6th St 5282 6981 
26 Polk Des Moines Hickman Road - 40th Place east to 0.07 

miles west of W 18th St 
198682 13953 

27 Story Ames 13th Street from 0.09 miles east of 
Stange Road to 0.07 miles west of 
Crescent Circle Dr. 

50731 10711 

28 Monona Mapleton Iowa 141 from 0.02 miles north of Sioux 
St. to 0.08 miles south of Oak St. 

1322 3007 

29 Kossuth Algona US 169 from 0.07 miles south of US 18 to 
0.23 miles south of Irvington Rd. 

5741   7263 

30 Mahaska Oskaloosa Iowa 92 from 0.12 miles east of IA 432 to 
0.07 miles west of Hillcrest Dr 

10938 11143 

31 Plymouth Merrill US 75 from 0.05 miles north of 2nd St to 
0.18 miles north of Jackson St 

754 7774 

32 Woodbury Sioux City S. Lakeport from 4th Ave to Lincoln Way 85013 15333 
 

Table 1:  Locations of the sites and population in city as per the 2000 Census 
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information about the city population in the year 2000, while ADT2000 were the 
average daily traffic volume in the year 2000, calculated by summation of MADT in 
the year 2000 divided by the number of days in that year (366 days). 
 
The Iowa Department of Transportation also provided monthly crash information at 
each site and estimated monthly average daily traffic (MADT) volume. Most sites 
were observed for 23 years, and only one site, Site 20, was observed for 21 years. Site 
1- Site 15 were the sites treated, while Site 18- Site 32 were the matched controls. The 
details are given in Table 2 below.  In the table, SID, YID, SYSTEM, DATE, YEAR 
denote site ID, matched pair ID, route designator, date of completion of intervention, 
and year of completion of intervention. One thing needed to clarify here is that 
LENGTH in the table below is the length of the road segment for intervention, 
approximately the length of the road segment for the intervention, in which road 
segment number of crashes was observed. And, in later parts, the length used for 
calculation will be the exact length of the road segment, in which number of crashes 
was obtained. 
 
SID YID SYSTEM ROUTE LANES LENGTH COMPDATE COMPYEAR
1 18 Iowa 7 3 1.41 1993 1993 
2 19 US 18 3 1.51 May 2003 2003 
3 20 Iowa 122 3 1.78 July 2001 2001 
4 21 US 34 3 2.04 July 2001 2001 
5 22 Iowa 13 3 0.35 July 2001 2001 
6 23 US 65 3 1.23 Fall 2002 2002 
7 24 Iowa 9 3 0.35 1998 1998 
8 25 US 275 3 1.09 1998 1998 
9 26 NA 0 3 1.19 June 1999 1999 
10 27 US 6 3 0.20 April 2000 2000 
11 28 NA 0 3 0.72 August 25, 1999 1999 
12 29 US 75 3 1.52 1999 1999 
13 30 Iowa 92 3 1.57 Summer 1999 1999 
14 31 US 20 3 0.64 2000 2000 
15 32 NA 0 3 0.77 2000 2000 
18 1 Iowa 7 4 0.71 1993 1993 
19 2 US 75 4 1.80 May 2003 2003 
20 3 NA 0 4 1.80 July 2001 2001 
21 4 Iowa 4 4 2.40 July 2001 2001 
22 5&8 Iowa 44 4 1.20 July 2001  2001  
23 6 Iowa 28 4 0.80 Fall 2002 2002 
24 7 US 69 4 0.90 1998 1998 
25 8 Iowa 44 4 1.20 1998 1998 
26 9 NA 0 4 1.50 June 1999 1999 
27 10 NA 0 4 0.33 April 2000 2000 
28 11 Iowa 141 4 0.70 August 25, 1999 1999 
29 12 US 169 4 2.00 1999 1999 
30 13 Iowa 92 4 1.50 Summer 1999 1999 
31 14 US 75 4 0.50 2000 2000 
32 15 NA 0 4 1.20 2000 2000 
 

Table 2:  Information recorded at the sites 
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Chapter 2      Methodology 
 
2.1  Exploratory data analysis 
 
Figure 2 below shows the number of crashes per month and mile (i.e. monthly crash 
frequency per mile) at each of the 30 sites in the study. The y-axis is number of 
crashes and the x-axis is month. The vertical line in each plot marks the time at which 
the intervention was completed. In the plots corresponding to the matched control 
sites, the vertical line was placed at the month during which the intervention was 
completed at the corresponding treated site. The solid line in each graph is a smooth 
estimate of the number of crashes over time for each site. The smooth curve was 
obtained by fitting a non-parametric local polynomial regression with optimal 
bandwidth (Simonoff, J. S., 1996). We fitted the non-parametric regression model to 
explore the form of the Poisson regression to be fitted in later analyses. Because the 
length of the site varied across sites (from a low of 0.24 miles to a high of 2.53 miles) 
the number of monthly crashes is not strictly comparable across sites in the graphs 
presented in Figure 2. 
 
Note that for most sites (treated and control) the number of crashes appears to 
decrease slowly over time, in an approximately linear shape, or perhaps slightly 
exponential fashion. Note too that seasonal effects on the number of crashes appear to 
be pronounced. Thus, it will be important to account for seasonality in the model for 
number of crashes.  
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Figure 2:  Observed number of monthly crash frequency per mile and smoothed 
estimate of number of crashes at each pair of sites. 

 
From the graphs, we see the number of monthly crashes per mile is typically small. It 
appears that the number of crashes decreases after the intervention at the treated sites, 
as expected. However, the number of crashes per mile at the control sites also seems 
to decreases a bit during the same period, but not dramatically. At both treated and 
control sites the number of crashes per mile decreases during the entire study period 
even though the traffic volume at most sites increased over time. In most of the 
matched pairs, the evolution of crash numbers per mile before the intervention was 
completed is quite similar and thus we may expect to find no significant differences in 
number of crashes per mile in the association between the two sites and time between 
the two sites in a pair before the intervention is completed. 
 
Based on the exploratory analysis above, we conclude that it is reasonable to consider 
a Poisson regression model with a log-link function to associate the Poisson mean to a 
set of covariates, since the linear model at the second (or log mean) stage corresponds 
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to an exponential model at the level of number of crashes. To account for the clear 
seasonal effects we will include a set of trigonometric functions with different periods. 
We will also assume that the regression model on the log Poisson mean is piecewise 
linear, or equivalently, has a change point at the month during which the intervention 
was completed at the treated sites. Since it is reasonable to assume that traffic 
volumes have an effect on the number of crashes, we will include them as exposures 
in the Poisson model.  
 
Tables 3 shows the average annual ADT for each site during the years preceding the 
four to three-lane conversion at treated sites and during the years following the 
intervention.  
 

Site id Average annual ADT in years 
before conversion 

Average annual ADT in years 
after conversion 

1 2080000 2670000 
2 3440000 4390000 
3 3220000 2600000 
4 2810000 2960000 
5 3260000 4080000 
6 3130000 3850000 
7 1750000 1830000 
8 2250000 2300000 
9 4260000 5010000 
10 3280000 3970000 
11 2490000 1340000 
12 2990000 3670000 
13 3220000 4820000 
14 2330000 3230000 
15 2630000 3030000 
18 1840000 2810000 
19 3720000 4860000 
20 460000 1000000 
21 1720000 2060000 
22 2080000 2520000 
23 2200000 2820000 
24 1260000 1360000 
26 4030000 5110000 
27 3410000 3790000 
28 930000 1090000 
29 2480000 2640000 
30 4240000 4220000 
31 2890000 3620000 
32 3080000 4480000 

Table 3: Average AADT at each site during the years preceding and following the 
conversion from four to three lanes of sites 1 – 15. 
 
We calculated the observed number of crashes per year and mile as well as the crash 
rate per year and mile (number of crashes per year and mile on a per 100,000,000 
AADT basis) at each site using the monthly crash data, for the years preceding and 
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following the four to three-lane conversion of sites 1 – 15. Those values, as well as 
the difference in the observed and AADT-scaled number of crashes and the percent 
reduction in the number of crashes during the years following the conversion are 
presented in Table 4 below. 
 
SID    No. Crashes      No. Crashes   Percent       Crash          Crash     Percent 
     observed before  observed after  reduction      rate          rate   reduction in  
       conversion       conversion                  before         after   crash rate 
 
 1        46.3         19.4        58.1        2247.9       730.4     67.5 
 2        22.7         15.9        29.9         663.0       362.4     45.3 
 3         4.7          2.2        52.5         146.2        86.4     40.9 
 4        20.9          7.8        62.4         740.5       264.6     64.3 
 5        23.0         30.5       -32.0         694.5       746.9     -7.5 
 6        18.8          6.9        63.3         619.1       179.4     71.0 
 7         7.3          2.9        61.0         418.6       155.5     62.8 
 8        26.3         12.7        51.7        1163.5       560.5     51.8 
 9        57.1         28.6        50.0        1366.9       570.8     58.2 
10        37.8         12.5        66.9        1176.1       314.3     73.3 
11        18.3          2.5        86.3         747.1       125.2     83.2 
12        34.4         14.5        57.9        1149.8       399.9     65.2 
13        17.1         15.5         9.0         539.7       322.1     40.3 
14         5.9          2.7        53.7         249.5        82.3     67.0 
15         7.1          4.2        40.9         282.6       144.8     48.7 
18        29.7         19.3        34.9        1619.8       711.9     56.0 
19        27.4         18.3        33.0         738.8       377.2     48.9 
20         0.6     3.1 -441.0   159.0  306.7   -92.0 
21         8.2          7.8         5.4         487.3       377.0     22.6 
22        14.9         10.3        31.1         716.6       407.2     43.2 
23         5.6          8.1       -44.0         249.8       287.9    -15.3 
24         7.4          4.6        37.1         592.8       337.3     43.1 
26        34.8         33.1         4.9         877.1       647.9     26.1 
27        12.8         15.9       -24.0         382.4       422.6    -10.5 
28        11.0          8.0        27.3        1265.7       733.7     42.0 
29        21.7         16.1        25.8         876.1       610.5     30.3 
30        55.3         47.5        14.1        1300.6        1129     13.2 
31         6.8          6.5         4.1         237.0       176.1     25.7 
32        21.5         21.0         2.0         741.8       492.5     33.6 
 

Table 4: Observed average number of crashes per year per mile at each site during 
the years preceding and following the four to three-lane conversion at sites 1 – 15, 
and observed percent reduction. Also, average number of crashes per year per mile 
per 100,000,000 vehicles (crash rate) at each site during years preceding and 
following conversion.                     
 
Entries in the column labeled “No. of crashes observed before intervention” is the 
average annual crash frequency per mile at each site, where the average was 
computed over all years preceding (and not including) the conversion year. Similarly, 
entries in the following column are the average annual frequency of crashes per mile 
for each site during the years following (and not including) the conversion year. The 
percent reduction was computed as  
 

Percent reduction = 100 × (1 – Frequency after / Frequency before) 
 
Finally, entries in the columns labeled “Crash rate before” and “Crash rate after” were 
computed by standardizing observed crash frequencies per year and mile to a 
100,000,000 AADT basis. And, we also calculate the percent reduction in crash rate 
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The numbers in the table suggest that the four to three-lane conversion was effective 
in reducing the expected number of crashes per year and mile at sites that underwent 
the conversion. The number of crashes appears to decline also at sites that did not get 
converted, but the decline seems to be less pronounced. Note that the site labeled 20 is 
unusual in that the number of crashes appears to increase dramatically after July of 
2001, the date of completion of the conversion at Site 3, its paired site. The 
unexpected increase in the number of crashes at Site 20 is a result of the very small 
number of crashes observed at the site during the years preceding the conversion.   
 
Figure 3 below further explores the potential differences between treated and control 
sites. For each pair of road segments, we drew a plot with three curves: the monthly 
crash rate (number of crashes per mile /traffic volume*100,000,000) for treated sites, 
the monthly crash rate at control sites, and the difference in monthly crash rate 
between the control and the treated sites (monthly crash rate of treated group – 
monthly crash rate of control group, solid green line). All plots are drawn at the same 
scale. In these graphs, the green line represents the difference in crash rate between 
treatment and control sites for each month. It appears that the difference is negative at 
most pairs of sites after the completion of the intervention than before. And, the 
general trend of the site-specific crash frequency, now, is clear from the plots. 
 

 18



 19



 20



 21



 

i
t

ity

itv

iid

it0




=
       group controlin  is  site if 0,

  timesomeat   treatedis  site if 1,
  :1 i

i
X it

 
Figure 3:  Monthly crash rate at treated and control sites and difference in monthly 

crash frequency within each pair of sites. 
 
2.2  Formulation of the Poisson regression model 
 
2.2.1  Model and notation 
 
We first define notation. In the following: 
 

  denotes site and takes on values 1 to 30, 
  denotes month (or time period) and  takes on values 1 to 276 (for i=17, t is from 1 

to 252), 
  denotes the number of monthly crashes at site i during time period (month) t, 
 is the estimated monthly average daily traffic (MADT) for site i at  time period t, 
 is a random effect corresponding to site i, 
denotes the time period during which the intervention is completed for treated site i 

and (fictitiously) for the corresponding matched site 


 , 
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We postulate that the number of monthly crashes at a site yit is a Poisson random 
variable with mean λitvit, and divided by 1,000 just for numerical convenience. Then,  
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At the second level, we model the log crash rate as a piecewise linear function of the 
covariates defined above, such that the function is continuous at the change point. The 
model is 
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and  is the between-site precision, defined as the inverse of the between-site 
variance in monthly number of crashes. 
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We adopt a Bayesian approach (Gelman, A., et al., 2004, and Pawlovich, 2003) for 
estimation and thus must choose prior distributions for all parameters at the third level 
of the model. We use proper, semi-conjugate but non-informative priors for two 
reasons. First, proper priors guarantee that the joint posterior distribution will be 
integrable. By letting the priors be non-informative (or almost non-informative) we let 
the data “speak for themselves”.  In this study, the number of observations available 
for each site, as well as the number of sites was large enough to assume that the priors 
will have little if any influence on the posterior distribution. The priors we chose for 
the regression parameters and for the precision parameter are: 
 

9  to1 from for  ,)1000,0(~ jNjβ , and, . )01.0,01.0(~2 gammabwτ
 
A priori, none of the covariates in the model are expected to be associated to the log 
crash rate but prior uncertainty about this value is large since the prior variance for the 
regression coefficients is 1,000.  The prior expected value of the precision parameter 
is 1.  The prior variance of the precision is set at 100.  
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2.2.2  Interpreting the parameters of the model  
 
Under the model, the log crash rate for a control road segment before time t  is given 
by: 

i0

( ) iitititit idXXXt +++++= 49382731log βββββλ  . 
Note that at control sites during months prior to the time of completion of the 
intervention at the paired treated sites, the log crash rate is assumed to depend linearly 
on time and to be subject to seasonal variability. 
 
During time periods after the time of intervention, when : itt 0>
 

( ) iitititiit idXXXttt ++++−++= 4938270431 )(log ββββββλ  . 
 

This expression can also be written as 
 

iitititiit idXXXtt ++++++−= 49382743041 )()()log( βββββββλ , 
 

so that the control sites are allowed to have a different intercept and a different 
regression coefficient on time. 
 
For a road segment receiving the intervention, the log crash rate when t is given 
by: 

it0≤

( ) ( ) ( ) iitititit idXXXt +++++++= 4938275321log βββββββλ  . 
 

After the intervention, when : itt 0>
 

( ) ( ) ( ) ( ) iitititiit idXXXttt ++++−+++++= 4938270645321 )(log βββββββββλ . 
 

As before, we can re-write this expression in the following form: 
 

( ) ( ) ( ) .log 4938276543060421 iitititiiit idXXXttt ++++++++−−+= βββββββββββλ
 

If there are no differences in log crash rate between the control and the treated sites 
before the treatment (intervention) is completed, we would expect 052 == ββ . That 
is, prior to the intervention we expect that both groups of sites have the same intercept 
and the same regression coefficient for log crash rate on time. Similarly, if there is no 
change in the slope of log crash rate on time before and after the treatment for the 
control sites, we expect that 04 =β .  
 
When assessing the effect of the intervention, we compare the log crash rates between 
treated and control intersections after the intervention was completed. We expect that 
the slope of log crash rate on time is more negative after time t0 in treated sites. That 
is, we expect that  
 

β3 + β4 > β3 + β4 + β5 + β6. 
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Notice that the coefficient 6β reflects the difference in the slope of log crash rate on 
time between treated and control intersections. If, as we hope, the crash rate decreases 
more after intervention in treated sites than in control sites, then we expect 06 <β . 
 
As to , , and , they account for the seasonal periods which may be 
associated to log crash rate. Because seasonal variation is accounted for with three 
trigonometric functions with different periods, the regression coefficients associated 
to the seasonal variables are not easily interpretable. In detail, if the month t is in 
classified as a Winter month, = 1 and then =0, =-1, and =1, and hence 

itX 2

2

itX 3

8

itX 4

49

itS

8

itX 2 itX 3 itX 4

937 βββββ +−=++it

X
ititX

itX 2

X

itX 4

X

it3

; if the month t is in Spring, = 2, and then 
=-1, =1, and =0, and hence 

itS

874987 32 βββββ +−=++ itXXX

itX 2 it itX 4

itit

X 3

; if the 
month t is in Summer, = 3, and then =0, =1, and =-1, and hence itS

49 97 8382 βββββ −=+ ititX

itX 2

+it

X
X

itX 4

X

it3

; and if the month t is in Fall, = 4, and then 
=1, =1, and =0, and hence 

itS

7 849827 3 βββββ +=++ itXXX

09 >

itit . We 
anticipate that the number of crashes will be a little higher when the weather is bad, 
especially in Winter, and will be lower when the weather becomes nicer, like in 
Summer. If so, then we expect 8 +− ββ (Winter), and 09 <8 − ββ (Summer). 
We cannot easily anticipate the signs of the sums of regression coefficients associated 
to the Spring or Fall seasons, however.  
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Chapter 3      Results  
 
3.1  Parameter estimates  
 
We estimated the posterior distributions of the parameters in the model established 
above using Markov chain Monte Carlo methods and the freeware WinBUGS 
(Cowles, M.K., 2004). For each parameter, we ran two parallel chains over 200,000 
iterations. Each chain was burned at iteration 100,001, and to avoid autocorrelation of 
the parameter draws, we thinned the chains, keeping every 100th draw for inference. 
We monitored convergence of the chains using the Gelman-Rubin statistic (Cowles, 
M.K., and Carlin B.P., 1996) and also checked the autocorrelation functions. After 
thinning, all autocorrelations were very close to zero for jβ ’s, for j from 3 to 9. 
For jβ , j =1 or 2, the autocorrelations did not decrease to almost zero even after 
thinning, but were not high enough to be of concern.  
 
The posterior mean and standard deviation as well as the 2.5th, 50th and 97.5th 
percentiles of the posterior distributions for each of the model parameters are given in 
Table 5. The column entitled MC error lists the numerical (or Monte Carlo) error and 
we note that, as expected, the MC error is very low relative to the posterior standard 
deviations. Posterior distributions were approximated using 2000 draws. 
 
Node  Mean    Std     MC error      2.5%       Median  97.5% 
  
beta[1] -4.755   0.2131     0.02345      -5.155       -4.762 -4.26  
beta[2] -0.2182   0.3857     0.04477      -1.05         -0.1882  0.4312  
beta[3] -0.0012   1.793E-4    4.298E-6    -0.0015      -0.0012 -8.074E-4  
beta[4] -0.00404   8.449E-4    1.909E-5    -0.0057      -0.0040 -0.002378  
beta[5] -4.51E-4   2.501E-4    7.085E-6    -9.28E-4    -4.47E-4  2.865E-5  
beta[6] -0.00915   0.001221    2.754E-5    -0.01167    -0.0091 -0.006766  
beta[7]  0.03782   0.01125     2.232E-4     0.01623      0.03807  0.06018  
beta[8] -0.04558   0.007849    1.421E-4    -0.06061    -0.04574 -0.03014  
beta[9]  0.08855   0.01091     2.398E-4     0.06637      0.08863  0.1093  
sigma.bw  0.9553   0.1345     0.004464     0.7348        0.9383  1.231  
tau.bw  1.159   0.3121     0.01025       0.6596        1.136  1.858  
 

Table5:   Summary of the posterior distributions of model parameters 
 

 
From the results above, we see that 2β  and 5β  are not significantly different from 
zero because the 95% posterior credible sets cover zero. Thus, with high probability, 
we conclude that 052 == ββ  as had been expected. The coefficient β4 has a 
posterior distribution with mass on the negative values, which suggests that log crash 
rate in control intersections is lower after the month during which the intervention 
was completed in treated intersections. This is clearly a result unrelated to the 
intervention itself (as control sites never were changed from four to three lanes) and 
indicates that traffic safety increased at all sites in recent years.  
 
As expected, the regression coefficient 6β is significantly smaller than zero, since the 
upper bound of the 95% credible set is negative. Thus, with high probability we can 
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conclude that the intervention was effective in that the slope of log crash rate on time 
is more negative in treated than in control intersections after the time of completion of 
the intervention. The change from four to three lanes in undivided roads in Iowa 
appears to increase traffic safety. Given the estimated likely set of values of 6β we 
expect that a comparison of the expected crash frequency after completion of the 
intervention to the frequency before the intervention was implemented will show a 
large reduction at treated sites and a smaller reduction at control sites. 

9β
 
Regarding the seasonal effect on log crashes, we see that 07 >β , 08 <β and 0< , 
since none of the credible sets cover zero. These results are consistent with our 
previous expectations. Further, we also calculated the posterior distributions of the 
linear combinations of the seasonal regression coefficients that were described in the 
previous section. We found that 87493827 βββββ +−=++ ititit XXX

8

 which 
corresponds to Spring is negative, while for Fall, 

7493827 βββββ +=++ ititit XXX  is also negative. Thus, the crash rate in Spring 
and Fall appears to resemble more the Summer crash rate than the Winter rate.   
 
 
3.2  Interpretation of results 
 
3.2.1  The effect of treatment (four to three lane conversion) 
 
The main objective of this work is to determine whether road diets are effective in 
terms of decreasing the number of crashes at the site. If we check the posterior 
distribution of the coefficient of time in the control group, the treated group and the 
difference between them, the credible sets are all below zero. That is, the expected 
number of crashes at all sites decreases over time. Table 6 shows the posterior 
distributions of the slope of log crash rate on month after the time of completion of 
the intervention at treated sites, as well as the distribution of the difference in slope 
between treated and control sites. 
 
Coef. for time 2.5% 50% (median) 97.5%  mean 
Control (C) 
( )43 ββ +  

-0.0067 -0.00521 -0.00371 -0.0052 

Treated (Tr) 
( )6543 ββββ +++  

-0.01633 -0.01479 -0.01326 -0.01481 

Diff  (Tr-C) 
( )65 ββ +  

-0.01189 -0.00958 -0.00742 -0.0096 

 
Table 6: Posterior distributions of the slope of crash rate on month for treated and 

control sites, and of the difference in slope between treated and control sites. 
 
Since the difference in the slope between treated and control sites is negative, the  
fitted line for log crash rate on time for the treated sites has a steeper slope than that 
for control sites with high probability. That is, the slope of the second segment in the 
piece-wise linear regression of log crash rate on time is more negative at sites which 
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underwent the conversion than at the control sites, as is expected if the intervention is 
effective. 
 
3.2.2  The effect of seasons 
 
To more easily interpret the effect of season on crash rate, we calculated the posterior 
probability that the number of crashes in Spring and Fall is less than in Winter (the 
severest season in a year) and higher than in Summer (the mildest season in a year). 
Those probabilities are given in Table 7 below. 
 

Probability ≤ Winter ≥ Summer  
Spring 1.0000 0.0000 
Fall 1.0000 1.0000 

 
Table 7:  Posterior probabilities that numbers of crashes in Spring and Fall are lower 

than in Winter and higher than in Summer. 
 
Results suggest that the number of crashes in Spring is significantly lower than in 
Winter and perhaps even lower than in Summer. In Fall, the number of crashes is 
lower than in Winter, but higher than in Summer. To better understand the effect of 
season, we calculated the 95% credible sets for the appropriate linear combinations of 
regression coefficients. Results are presented in Table 8 below.  
 
 
 2.5% 50% 

(median) 
97.5%  mean 

Winter  ( 98 )ββ +−  0.10831 0.13405 0.15923 0.134128 
Spring     ( 98 )ββ −  -0.15923 -0.13408 -0.10831 -0.13413 
Summer ( 87 )ββ +−  -0.10963 -0.08383 -0.05606 -0.08341 
Fall         ( 87 )ββ +  -0.03491 -0.00745 0.01852 -0.00776 

 
Table 8:  95% posterior credible sets for linear combinations of regression 

coefficients representing the effect of seasons. 
 
The credible set for the linear combination of parameters representing Winter is above 
zero, while the one for Summer is below zero, which is consistent with intuition. That 
is, the log crash rate tends to be higher in Winter and lower in Summer.  
 
However, the season associated to the lowest crash rates is Spring. Notice that the 
credible set of the linear combination of regression coefficients representing Spring is 
below zero, and that all quantiles and posterior mean are lower than those 
corresponding to Summer. One possible explanation for this is that drivers, cautious 
after the difficult driving during winter months experience fewer crashes as weather 
(and thus traveling conditions) improves. Similarly, as the weather gets worse in Fall, 
the number of crashes due to drivers used to Summer conditions tends to increase.  
 
 

 28



Chapter 4    Expected crash frequencies at study sites 
 
4.1 A comparison of expected crash frequencies after and 

before conversion 
 
The main objective of this work was to assess whether the four to three lane 
conversion at the 15 sites was effective in increasing safety. The observed crash 
frequencies presented in Table 4 suggest that in fact there was a more pronounced 
reduction in crash frequency at converted sites than at sites that were not modified, 
even though traffic volumes appear to have increased at most sites. 
 
In this section, we estimate the posterior distributions of the average expected number 
of crashes per year and mile for each of the study sites during the years preceding and 
also following the conversion at sites 1-15. To quantify the difference in crash 
frequency during the “After” and “Before” periods, we computed the posterior 
distribution of annual frequency per site and mile and also the posterior distribution of 
the percent reduction in crash frequency for each site.  The overall reduction was 
computed from the average, over the treated and over the control sites, of the site-
specific “Before” and “After” crash frequencies per mile. 
 
Figure 4 below shows, for each site in the study, the posterior mean of the expected 
yearly number of crashes per mile (i.e. expected yearly crash frequency per mile) and 
the 2.5th and 97.5th percentiles of the posterior distribution of crash frequency.  The 
solid vertical lines on each plot mark the year of completion of the intervention at the 
treated sites.  
 
 
 

 

 29



 

 30



 

 31



 32



 

i

year ijij L/µ

 
Figure 4: Posterior mean and 95% credible set of the expected crash frequency per 
year and mile for each site in the study. Years preceding the completion of the 
intervention are to the left of the vertical line in each plot. 
 
From the figure, we see that there was an estimated reduction in crash frequency per 
mile at most sites. The reduction appears to be more pronounced at sites that 
underwent the conversion from four to three lanes.  Notice that the 95% credible sets 
for expected crash frequencies are in general rather narrow. Thus, we are confident 
that site-specific expected annual crash frequency per mile is estimated with a good 
degree of confidence. 
 
Table 9 shows, for each site in the study, the posterior mean and 95% credible set for 
each of the following quantities: 
• The average expected crash frequency per year and mile, during years preceding 

the completion of the four to three-lane conversion.  Formally, the average for the 
ith site is computed as: 

yearComp

Startj

n
∑ =

.

. , 

where Li is the length of the ith site at the year j, and ni is the number of years of 
traffic safety information for the site during the years preceding the conversion.  
Here, µij is the expected number of crashes per mile in jth year for the ith site and 
is obtained directly from the Poisson model fitted earlier.  

• The average expected crash frequency per year and mile, during years following 
the completion of the four to three-lane conversion. Formally, the average for the 
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ith site is computed as above, but now the average is taken over the years that 
follow the completion of the intervention.  

• The difference in expected crash frequency in the two periods. 
• The reduction, expressed as a percentage, in the expected annual crash frequency 

per mile at each of the sites between the “After” and the “Before” periods. 
 
 

 
Expected annual crash 

frequency per mile 
 

 
 
 
Site 

Before After 
 

 
 

Difference in 
crash frequency 

 
 

Percent reduction in 
crash frequency 

1 43 (40.9,46.5) 21 (20.2,23.3) -22.1 (-24.5,-19.7) 50.4  (47.4,53.6) 
2 21 (20.2,23.1) 19 (17.8,21.0) -2.2  (-3.1,-1.3) 10.2  (6.2,14.3) 
3 5  (4.9,6.6) 3  (2.6,3.6) -2.6  (-3.1,-2.2) 46.0  (43.7,48.3) 
4 22 (21.3,24.1) 15 (14.7,17.2) -6.9  (-7.7,-6.1) 30.4  (27.4,33.4) 
5 25 (22.1,29.0) 20 (18.0,24.0) -4.6  (-5.8,-3.6) 18.1  (14.6,21.5) 
6 21 (19.3,23.8) 19 (17.8,21.8) -2.0  (-2.9,-1.2) 9.2   (5.3,13.0) 
7 9  (7.3,12.6) 5  (3.8,6.7) -4.5  (-5.9,-3.4) 47.4  (45.2,49.8) 
8 25 (22.9,27.5) 13 (11.9,14.4) -11.9 (-13.4,-10.9) 47.5  (45.3,50.0) 
9 53 (50.2,55.9) 35 (33.1,37.5) -17.7 (-19.6,-15.9) 33.3  (30.8,36.0) 
10 28 (24.4,34.1) 20 (17.5,24.0) -8.0  (-9.7,-6.5) 28.2  (25.3,31.1) 
11 17 (15.0,19.3) 7  (6.8,8.6) -9.4 (-10.7,-8.2) 55.0  (53.4,56.5) 
12 35 (33.6,37.6) 24 (22.6,25.6) -11.6 (-13.0,-10.3) 32.6  (30.0,35.5) 
13 18 (16.8,19.4) 14 (13.6,15.8) -3.4  (-4.1,-2.8) 18.8  (15.7,22.0) 
14 4  (3.4,5.2) 3  (3.0,4.6) -0.5  (-0.7,-0.4) 12.5  (9.2,15.9) 
15 6  (5.1,7.6) 4  (3.9,5.7) -1.5  (-1.9,-1.2) 24.3  (21.5,27.2) 
18 24 (22.3,27.3) 23 (21.1,25.8) -1.2  (-3.2,0.9) 4.7  (-3.9,12.4) 
19 24 (23.6,26.0) 26 (24.6,27.7) 1.3   (0.3,2.1) -5.1  (-8.6,-1.0) 
20 1  (1.1,1.8) 2  (1.9,3.0) 1.0   (0.8,1.2) -67.8 (-72.7,-62.8) 
21 7  (6.7,8.1) 7  (6.5,7.9) -0.2  (-0.5,0.1) 2.3  (-0.7,6.1) 
22 14 (12.6,5.4) 13 (12.5,15.4) -0.1  (-0.6,0.4) 0.4  (-2.7,4.4) 
23 5  (4.4,6.6) 5  (4.6,7.0) 0.3   (0.0,0.5) -5.1  (-8.7,-0.8) 
24 6  (5.7,7.6) 5  (4.5,6.2) -1.3  (-1.6,-1.0) 19.0  (15.4,22.7) 
25 14 (13.4,16.3) 13 (12.2,15.0) -1.2  (-1.8,-0.5) 7.8   (3.6,12.1) 
26 34 (32.4, 36.7) 32 (30.6,34.8) -1.9  (-3.4,-0.5) 5.4   (1.5,9.6) 
27 5  (4.6,6.7) 5  (4.4,6.4) -0.3  (-0.5,-0.1) 4.9   (1.2,9.0) 
28 9  (8.0,10.8) 8  (7.2,9.8) -0.8  (-1.1,-0.5) 8.7   (5.0,12.5) 
29 20 (19.0,21.6) 16 (15.4,18.0) -3.5  (-4.3,-2.8) 17.5  (14.2,21.1) 
30 44 (42.7,45.8) 33 (31.6,35.2) -10.6 (-12.1,-9.1) 24.1  (20.9,27.4) 
31 6  (5.6,8.3) 6  (5.3,7.9) -0.4  (-0.7,-0.1) 5.4   (1.7,9.5) 
32 18 (17.3,20.1) 22 (20.8,24.2) 3.9   (3.0,4.7) -20.7 (-24.6,-16.0) 
 
Table 9: Expected annual crash frequency per mile per site during “Before” and 
“After” periods, difference in expected crash frequency and percent reduction in 
crash frequency. 
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Table 10 shows the overall effect of the intervention. We computed the posterior 
distribution of expected annual crash frequencies per mile for all treated and all 
control sites over the years preceding and following the intervention. The four 
posterior distributions are shown in Figure 5. 
 
 

 Crash frequency per mile 
before completion 

Crash frequency per mile 
after completion 

All control 
sites 

16 
(15.5, 16.3) 

15 
(14.3, 15.5) 

All treatment 
sites 

23 
(21.9, 23.2) 

15 
(14.6, 15.9) 

 
Table 10: Posterior mean and 95% credible set of the average (over treated and 
control sites) of the expected annual crash frequency per mile during the years 
preceding and following the four to three-lane conversion. 
 
From the figures, note that while the expected annual crash frequency per mile has 
decreased at all sites, the reduction is significantly more pronounced at sites that 
underwent the conversion. The posterior distributions shown in Figure 5 are narrow, 
indicating that the posterior mean is a reliable summary of the distribution of likely 
values of expected crash frequencies. 
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Figure 5:  Posterior distributions of the average (across treated and control sites) 
expected annual crash frequencies per mile during the years preceding and following 
the completion of the intervention. 
 
 
Because the traffic volume at the different sites varied across sites both during the 
“Before” and “After” periods and also because volume appears to be on the rise at all 
sites, we recomputed the posterior distributions of the expected annual crash 
frequencies per site and mile during each of the two periods, but now re-normalizing 
each site to a common 100,000,000 AADT, which actually is the expected annual 
crash rate per mile. The results of those calculations are shown in Tables 11 (averages 
over all sites in each of the two groups) and 12 (site-specific values).  Notice that the 
expected crash frequencies as well as the percent reductions in the expected crash 
frequencies differ from those presented in Tables 9 and 10. This is to be expected 
given the variability and evolution in traffic volumes. 
 
 

 Expected annual crash rate per 
mile before completion 

Expected annual crash rate 
per mile after completion 

All control sites 652 
(617,683) 

486 
(466,506) 

All treatment sites 792 
(758,826) 

442 
(422,462)  

 
Table 11: Posterior mean and 95% credible set of the average (over treated and  
control sites) of the expected annual crash rate per mile during the years preceding 
and following the four to three-lane conversion. 
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Expected annual crash rate per 

mile 
 

         
 
 
Site 

Before After 

 
 
Difference in crash 

rate 

 
 
Percent reduction  

in crash rate 

1 2068(1873,2263) 810(751,868) -1258(-1439,-1078) 60.8(57.3,64.2) 
2 631(590,680) 444(408,482) -187(-217,-158) 29.6(25.7,33.1) 
3 180(136,223) 117(100,137) -63(-100,-23) 33.8(15.8,46.4) 
4 807(721,940) 531(496,580) -276(-391,-204) 33.9(27.2,42.5) 
5 776(616,939) 510(441,587) -265(-397,-115) 33.7(18.8,43.3) 
6 708(634,782) 499(453,555) -210(-235,-181) 29.6(26.6,32.6) 
7 551(421,726) 278(212,369) -274(-353,-208) 49.6(47.5,51.8) 
8 1125(1028,1233) 584(530,638) -541(-608,-494) 48.1(45.8,50.4) 
9 1256(1194,1334) 707(660,750) -549(-605,-496) 43.7(41.0,46.6) 
10 866(745,1040) 511(439,601) -354(-426,-299) 40.9(38.5,43.3) 
11 682 (602,771) 383(337,434) -299(-342,-257) 43.9(41.8,46.0) 
12 1231(1162,1298) 681(641,724) -551(-594,-501) 44.7(42.6,46.8) 
13 564 (523,607) 315(292,340) -249(-274,-223) 44.1(41.5,46.7) 
14 190(149,228) 115(90,138) -75(-91,-59) 39.5(37.2,41.8) 
15 239(195,290) 147(121,178) -92(-114,-73) 38.5(36.0,40.9) 
18 1317(1141,1483) 864(781,950) -453(-584,-302) 34.2(26.0,40.9) 
19 667(632,707) 538(508,573) -130(-154,-107) 19.4(16.5,23.0) 
20 370(294,468) 236(192,298) -134(-183,-93) 36.0(31.3,40.8) 
21 437(318,567) 348(314,384) -89(-209,12) 17.6(-3.2,37.5) 
22 682(525,888) 552(494,611) -130(-304,11) 17.1(-2.2,35.0) 
23 245(201,301) 200(162,250) -46(-56,-36) 18.6(15.8,21.8) 
24 528(452,609) 384(324,447) -143(-175,-119) 27.2(23.8,30.5) 
25 748(675,821) 547(489,598) -201(-236,-170) 26.9(23.5,30.2) 
26 867(811,927) 649(607,691) -218(-254,-180) 25.1(21.7,28.9) 
27 170(137,199) 143(114,168) -27(-36,-20) 15.9(12.7,19.5) 
28 1026(883,1191) 754(629,862) -273(-335,-214) 26.5(22.7,30.4) 
29 822(771,885) 624(579,675) -197(-225,-168) 24.0(20.7,27.3) 
30 1047(1009,1085) 795(750,835) -253(-290,-217) 24.1(21.0,27.4) 
31 243(200,295) 190(156,231) -54(-69,-40) 22.1(19.4,25.3) 
32 613(564,659) 474(437,507) -140(-160,-121) 22.8(20.0,25.9) 
 
Table 12: Expected annual crash frequency per mile per site for 1,000,000 AADT 
during “Before” and “After” periods, difference in expected crash frequency and 
percent reduction in crash frequency. 
     
 
4.2  Forecasting expected crash numbers at the 30 study sites 
 
In this section, we compute the posterior predictive distributions of: 
 

• Expected annual crash frequency per mile at each site 
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• Difference in expected crash frequency per mile between treatment and 
control sites defined as  

 
[ ]

[ ]controlit

treatmentit

,

,100
µ

µ×
 

 which we label “Relative expected crash frequencies” and denote D1 . 
 

• Difference in expected crash frequency per mile between treatment and 
control sites defined as 

 
[ ] [ ]( )
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treatmentitcontrolit

,

,,100
µ

µµ −×
 

which we label “Percent reduction in expected crash frequency” and denote D2. 
 
Note that D2 = 1 - D1.  

 
In the expressions above, µit is defined as 
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That is, µit denotes the expected number of crashes (per 1,000 ADT) at the ith site 
during the tth time period, while Lit , the length of road segment at the ith site at tth 
time period, is defined similarly to the previous part. Predictions are carried out for 
each of the 30 study sites during six periods:  the months of January and June one, 
three and five years after the date the intervention was completed. If the intervention 
is effective, we expect both D1 and D2 to decrease over time. Ideally, we hope that D1 
will be less than 100 and that t D2 will be negative. Even if this is not the case, the 
reason may be differences in the actual level of crash frequency at each treatment site 
relative to its control site, so what we are most interested in is the evolution of the two 
metrics rather than their actual values. 
 
Since site 5 and site 8 had the same matched control site but the completion date of 
intervention at the two sites was different, we used for prediction site 22 in both cases 
but changed the completion date at the control accordingly, to correspond to the 
intervention data at each of the treatment sites.  
 
Because in some cases we predict crashes at a time that exceeds the study period (out 
of sample prediction), we have no ADT information to insert into the model to carry 
out the forecasting. In those cases, we use the value of MADT in the last January or 
June in the dataset at each site. Where available, we use the observed (or estimated) 
MADT at that time. For example, if the completion date is June, 1993, we calculate 
the predicted number of crashes per mile and differences in crash numbers at the site 
for January /June in 1995, January/June in 1997, and January/June in 1999. If the 
completion date is July, 2001, we calculate the predicted number of crashes and 
differences in crash numbers for January /June in 2003, and January/June in 2005, and 
January/June in 2007. In this case, we use the MADT in January/June in 2004 as the 
MADT in January/June in 2005 and 2007.  
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The tables that follow, Table 13 – Table 18 show, for each treated site and its matched 
pair, the predicted expected annual crash frequency per mile during each of the 
prediction periods.  In each case, we provide the posterior mean as well as the 95% 
credible set.  
 
From the tables, we see that the predicted expected crash frequency per mile at each 
of the sites is consistent with the numbers of crashes per mile observed at each of the 
sites, at least when the prediction period was included in the dataset. Hence we are 
confident that the model predictions are reasonable. 
 
Road  Traffic  

Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 190000 3.10 (2.90,3.30) 18 168000 2.15 (1.93,2.38) 
2 328000 1.46 (1.34,1.59) 19 363000 2.20 (2.04,2.37) 
3 194000 0.26 (0.22,0.30) 20 76000 0.21 (0.17,0.26) 
4 221000 1.33 (1.23,1.45) 21 154000 0.62 (0.55,0.68) 
5 304000 1.76 (1.52,2.04) 22 188000 1.20 (1.06,1.34) 
6 290000 1.55 (1.40,1.71) 23 212000 0.48 (0.39,0.58) 
7 130000 0.54 (0.40,0.70) 24 102000 0.50 (0.42,0.59) 
8 175000 1.51 (1.37,1.64) 25 191000 1.36 (1.22,1.50) 
9 381000 3.60 (3.37,3.85) 26 389000 3.10 (2.90,3.31) 
10 298000 1.87 (1.57,2.20) 27 298000 0.53 (0.43,0.63) 
11 62000 0.32 (0.28,0.37) 28 82000 0.76 (0.65,0.89) 
12 242000 2.18 (2.03,2.35) 29 196000 1.52 (1.41,1.63) 
13 361000 1.54 (1.41,1.68) 30 302000 2.99 (2.82,3.17) 
14 266000 0.38 (0.30,0.47) 31 257000 0.58 (0.46,0.72) 
15 267000 0.48 (0.39,0.57) 32 249000 1.53 (1.41,1.67) 

 
Table13:  Posterior predictive distribution of the expectation of the number of crashes 
per mile at each study site for the month of January, one year after completion of the 

intervention 
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Road  Traffic  
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 222000 2.56 (2.40,2.74) 18 196000 1.86 (1.68,2.06) 
2 382000 1.21 (1.11,1.32) 19 423000 1.91 (1.77,2.06) 
3 226000 0.22 (0.19,0.25) 20 83000 0.17 (0.13,0.21) 
4 257000 1.10 (1.01,1.20) 21 179000 0.54 (0.48,0.59) 
5 354000 1.46 (1.25,1.70) 22 220000 1.04 (0.92,1.17) 
6 338000 1.28 (1.16,1.42) 23 247000 0.42 (0.34,0.50) 
7 152000 0.45 (0.33,0.59) 24 119000 0.44 (0.36,0.51) 
8 204000 1.25 (1.14,1.37) 25 223000 1.18 (1.06,1.31) 
9 416000 2.79 (2.60,2.99) 26 424000 2.52 (2.35,2.69) 
10 348000 1.55 (1.30,1.82) 27 326000 0.43 (0.35,0.52) 
11 68000 0.25 (0.22,0.28) 28 95000 0.66 (0.56,0.77) 
12 282000 1.81 (1.69,1.94) 29 229000 1.32 (1.22,1.41) 
13 420000 1.28 (1.17,1.39) 30 352000 2.60 (2.45,2.76) 
14 310000 0.31 (0.25,0.39) 31 299000 0.50 (0.40,0.62) 
15 292000 0.37 (0.30,0.44) 32 272000 1.25 (1.14,1.35) 

 
Table 14:  Posterior predictive distribution of the expectation of the number of 

crashes at each study site for the month of June, per mile, one year after completion 
of the intervention 

 
 
Road  Traffic  

Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 203000 2.31 (2.14,2.49) 18 179000 2.02 (1.82,2.22) 
2 328000 1.03 (0.93,1.13) 19 363000 1.94 (1.77,2.12) 
3 196000 0.18 (0.16,0.22) 20 77000 0.18 (0.15,0.23) 
4 223000 0.94 (0.85,1.04) 21 155000 0.55 (0.49,0.61) 
5 307000 1.25 (1.06,1.45) 22 190000 1.07 (0.94,1.21) 
6 290000 1.09 (0.97,1.21) 23 212000 0.42 (0.35,0.51) 
7 122000 0.27 (0.20,0.36) 24 101000 0.44 (0.37,0.52) 
8 174000 1.06 (0.95,1.16) 25 188000 1.18 (1.05,1.32) 
9 381000 2.53 (2.32,2.74) 26 389000 2.73 (2.52,2.96) 
10 298000 1.26 (1.05,1.50) 27 281000 0.44 (0.35,0.53) 
11 64000 0.23 (0.20,0.27) 28 81000 0.67 (0.57,0.78) 
12 320000 2.03 (1.86,2.21) 29 196000 1.34 (1.23,1.45) 
13 358000 1.07 (0.97,1.18) 30 322000 2.82 (2.62,3.02) 
14 224000 0.22 (0.18,0.28) 31 310000 0.62 (0.49,0.76) 
15 195000 0.25 (0.21,0.30) 32 249000 1.35 (1.22,1.50) 

 
Table 15:  Posterior predictive distribution of the expectation of the number of 
crashes at each study site for the month of January, per mile, three years after 

completion of the intervention 
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Road  Traffic  

Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 236000 1.91  (1.77,2.07) 18 208000 1.75  (1.58,1.95) 
2 382000 0.85  (0.77,0.94) 19 423000 1.68  (1.54,1.85) 
3 229000 0.15  (0.13,0.18) 20 84000 0.15  (0.12,0.19) 
4 260000 0.78  (0.70,0.86) 21 181000 0.48  (0.42,0.54) 
5 357000 1.03  (0.88,1.21) 22 222000 0.93  (0.81,1.05) 
6 338000 0.90  (0.80,1.00) 23 247000 0.37  (0.30,0.44) 
7 142000 0.23  (0.17,0.30) 24 118000 0.38  (0.32,0.45) 
8 203000 0.88  (0.79,0.97) 25 220000 1.03  (0.91,1.15) 
9 416000 1.96  (1.79,2.13) 26 424000 2.22  (2.04,2.41) 
10 348000 1.04  (0.87,1.25) 27 307000 0.36  (0.29,0.43) 
11 70000 0.18  (0.16,0.21) 28 94000 0.58  (0.49,0.68) 
12 374000 1.68  (1.53,1.84) 29 229000 1.16  (1.06,1.26) 
13 417000 0.88  (0.80,0.98) 30 375000 2.45  (2.27,2.64) 
14 261000 0.19  (0.15,0.23) 31 362000 0.54  (0.43,0.66) 
15 213000 0.20  (0.16,0.23) 32 272000 1.10  (0.99,1.21) 

 
Table 16:  Posterior predictive distribution of the expectation of the number of 

crashes at each study site for the month of June, per mile, three years after 
completion of the intervention 

 
 
Road  Traffic  

Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 215000 1.72  (1.56,1.90) 18 253000 2.52  (2.26,2.80) 
2 328000 0.72  (0.64,0.81) 19 363000 1.71  (1.53,1.91) 
3 196000 0.13  (0.11,0.15) 20 77000 0.16  (0.13,0.20) 
4 223000 0.66  (0.58,0.75) 21 155000 0.49  (0.43,0.55) 
5 307000 0.88  (0.74,1.03) 22 190000 0.94  (0.81,1.08) 
6 290000 0.76  (0.67,0.86) 23 212000 0.37  (0.30,0.45) 
7 152000 0.31  (0.23,0.41) 24 101000 0.39  (0.32,0.46) 
8 176000 0.72  (0.63,0.81) 25 190000 1.05  (0.93,1.20) 
9 385000 1.79  (1.60,1.99) 26 392000 2.44  (2.20,2.70) 
10 298000 0.88  (0.73,1.06) 27 281000 0.39  (0.31,0.47) 
11 65000 0.16  (0.14,0.19) 28 82000 0.60  (0.50,0.71) 
12 324000 1.44  (1.29,1.61) 29 198000 1.19  (1.07,1.32) 
13 362000 0.76  (0.67,0.85) 30 325000 2.51  (2.27,2.77) 
14 224000 0.16  (0.12,0.20) 31 310000 0.55  (0.43,0.68) 
15 195000 0.18  (0.14,0.22) 32 427000 2.05  (1.80,2.31) 

 
Table 17:  Posterior predictive distribution of the expectation of the number of 
crashes at each study site for the month of January, per mile, five years after 

completion of the intervention 
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Road  Traffic  
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

Road 
 

Traffic 
Volume 
(MADT) 

      Mean 
(0.025, 0.975) 

1 251000 1.43  (1.28,1.58) 18 294000 2.19  (1.95,2.44) 
2 382000 0.60  (0.52,0.67) 19 423000 1.49  (1.32,1.67) 
3 229000 0.11  (0.09,0.13) 20 84000 0.13  (0.10,0.17) 
4 260000 0.55  (0.48,0.62) 21 181000 0.42  (0.37,0.48) 
5 357000 0.73  (0.60,0.86) 22 222000 0.82  (0.70,0.95) 
6 338000 0.63  (0.55,0.72) 23 247000 0.33  (0.26,0.40) 
7 177000 0.26  (0.18,0.34) 24 118000 0.34  (0.28,0.40) 
8 205000 0.59  (0.52,0.67) 25 222000 0.91  (0.80,1.05) 
9 420000 1.39  (1.23,1.55) 26 428000 1.98  (1.78,2.20) 
10 348000 0.73  (0.60,0.88) 27 307000 0.32  (0.25,0.39) 
11 71000 0.13  (0.11,0.15) 28 95000 0.52  (0.43,0.62) 
12 377000 1.19  (1.05,1.34) 29 231000 1.04  (0.92,1.15) 
13 422000 0.63  (0.55,0.71) 30 379000 2.18  (1.97,2.42) 
14 261000 0.13  (0.10,0.16) 31 362000 0.48  (0.37,0.59) 
15 213000 0.14  (0.11,0.17) 32 466000 1.67  (1.46,1.88) 

 
Table 18: Posterior predictive distribution of the expectation of the number of crashes 

at each study site for the month of June, per mile, five years after completion of the 
intervention 

 
From the results shown in the tables above, we see that in general, as time goes by, 
the expected number of crashes per mile at each site in the treatment group continues 
to decrease faster than the number at the corresponding paired site in the control 
group.  
 
It is also of interest to predict the difference in expected crash numbers between 
treatment and control sites that can be expected after the intervention is completed. 
We obtained the posterior predictive distributions of the differences in crash numbers 
per mile that were defined earlier and that we denoted D1 and D2. Both definitions of 
the expected difference attempt to compare what can be expected in terms of crash 
numbers per mile at treatment sites when compared to control sites.  
 
Results are presented in Tables 19 and 20.  In the tables, each column represents a 
prediction period. Entries in the table are the means of the posterior predictive 
distributions of the different metrics and in parenthesis, the 95% credible sets for the 
metrics.  For example, if the 95% credible set is (47, 62) we say that with 95% 
probability, the predicted number of crashes at the treatment site is between 47% and 
62% of the predicted number of crashes at the matched control site. 
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Relative expected crash frequencies (D1 )  or expected frequency at converted site relative 
to expected frequency at corresponding paired site. Entries are: Mean (0.025, 0.975) 

Paired 
Road 

Jan., 
1 year 

June, 
1 year 

Jan., 
3 year 

June, 
3 year 

Jan., 
5 year 

June, 
5 year 

1 and 
18 

144.6 
(129.0,162.0) 

137.8 
(122.7,154.4) 

114.9 
(101.8,129.2) 

109.5 
(96.4,123.5) 

68.7 
(59.3,79.0) 

65.5 
(56.1,75.6) 

2 and 
19 

66.8 
(59.9,74.4) 

63.6 
(56.9,71.0) 

53.1 
(46.4,60.1) 

50.6 
(44.1,57.6) 

42.2 
(35.7,49.5) 

40.2 
(33.7,47.6) 

3 and 
20 

127.6 
(96.5,162.8) 

129.9 
(98.2,165.7) 

101.4 
(75.8,129.2) 

103.2 
(76.9,131.8) 

80.6 
(59.3,104.5) 

82.1 
(59.9,106.7) 

4 and 
21 

216.6 
(191.5,245.6) 

206.4 
(181.7,234.3) 

172.1 
(148.8,197.7) 

164.1 
(140.7,189.8) 

136.9 
(113.8,162.4) 

130.5 
(107.4,155.7) 

5 and 
22 

147.7 
(122.4,177.8) 

140.8 
(116.6,169.7) 

117.4 
(96.2,143.4) 

111.9 
(90.9,137.3) 

93.4 
(74.6,116.5) 

89.0 
(70.4,111.5) 

6 and 
23 

325.6 
(263.0,399.7) 

310.4 
(250.4,380.8) 

258.7 
(206.8,319.2) 

246.6 
(196.0,305.1) 

205.7 
(161.2,256.2) 

196.1 
(153.2,244.6) 

7 and 
24 

108.7 
(77.0,147.7) 

103.6 
(73.3,141.2) 

62.9 
(44.0,85.7) 

59.9 
(41.8,82.0) 

80.7 
(55.5,111.6) 

77.0 
(52.8,106.9) 

8 and 
25 

111.5 
(97.1,126.8) 

106.2 
(92.4,121.1) 

89.8 
(77.2,103.3) 

85.6 
(73.1,99.1) 

68.3 
(56.5,81.1) 

65.1 
(53.5,77.9) 

9 and 
26 

116.5 
(106.8,127.0) 

111.0 
(101.6,121.4) 

92.5 
(82.7,102.9) 

88.2 
(78.2,98.8) 

73.6 
(63.2,84.7) 

70.2 
(59.5,81.6) 

10 and 
27 

358.6 
(274.8,459.8) 

365.1 
(279.6,468.5) 

290.1 
(221.4,378.1) 

295.3 
(223.8,386.2) 

230.7 
(172.0,306.0) 

234.9 
(175.1,312.7) 

11 and 
28 

42.5 
(34.7,52.3) 

38.0 
(30.8,46.5) 

35.0 
(27.8,43.1) 

31.2 
(24.8,38.7) 

27.8 
(21.7,35.0) 

24.8 
(19.2,31.4) 

12 and 
29 

144.2 
(131.0,159.1) 

137.4 
(124.3,152.3) 

151.8 
(134.9,170.3) 

144.8 
(127.9,163.6) 

120.8 
(103.1,140.1) 

115.1 
(97.3,134.5) 

13 and 
30 

51.5 
(46.3,56.8) 

49.1 
(44.1,54.2) 

37.9 
(33.6,42.7) 

36.1 
(31.8,40.9) 

30.1 
(25.7,35.1) 

28.7 
(24.2,33.7) 

14 and 
31 

66.1 
(47.7,88.9) 

63.0 
(45.4,84.7) 

36.7 
(26.5,49.6) 

34.9 
(25.2,47.3) 

29.1 
(20.8,40.2) 

27.8 
(19.7,38.4) 

15 and 
32 

31.3 
(25.5,38.0) 

29.8 
(24.2,36.3) 

18.6 
(14.9,23.0) 

17.8 
(14.1,21.9) 

8.6 
(6.7,10.8) 

8.2 
(6.4,10.4) 

 
Table 13:  Posterior predictive distribution for D1 

 
What do we expect to see in the entries of the table?  We do not focus on the values of 
the metrics themselves since those mean little without a reference to the actual crash 
frequency level at each site.  Instead, we focus on the trend of D1 and D2 over time, 
and note the following: 

• As anticipated, D1 decreases as time goes by. This is consistent with the 
steeper negative slope of log crash rate on time after completion of the 
conversion at converted sites.  

• Also as anticipated, D2 increases as time goes by. This is due to the same 
reason. 
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Percent reduction in crash frequency at converted relative to control sites (D2 ). 
Entries are:  Mean (0.025, 0.975) 

Paired 
Road 

Jan., 
1 year 

June, 
1 year 

Jan., 
3 year 

June, 
3 year 

Jan., 
5 year 

June, 
5 year 

1 and 
18 

-44.6 
(-62.0,-29.0) 

-37.8 
(-54.4,-22.7) 

-14.9 
(-29.2,-1.8) 

-9.5 
(-23.5,3.6) 

31.3 
(21.0,40.7) 

34.5 
(24.4,43.9) 

2 and 
19 

33.2 
(25.6,40.1) 

36.4 
(29.0,43.1) 

46.9 
(39.9,53.6) 

49.4 
(42.4,55.9) 

57.8 
(50.5,64.3) 

59.8 
(52.4,66.3) 

3 and 
20 

-27.6 
(-62.8,3.5) 

-29.9 
(-65.7,1.8) 

-1.4   
(-29.2,24.2) 

-3.2   
(-31.8,23.1) 

19.4    
(-4.5,40.7) 

17.9    
(-6.7,40.1) 

4 and 
21 

-116.6 
(-145.6,-91.5) 

-106.4 
(-134.3,-81.7) 

-72.1   
(-97.7,-48.8) 

-64.1   
(-89.8,-40.7) 

-36.9   
(-62.4,-13.8) 

-30.5   
(-55.7,-7.4) 

5 and 
22 

-47.7 
(-77.8,-22.4) 

-40.8 
(-69.7,-16.6) 

-17.4   
(-43.4,3.8) 

-11.9   
(-37.3,9.1) 

6.6   
(-16.5,25.4) 

11.0   
(-11.5,29.6) 

6 and 
23 

-225.6 
(-299.7,-163.0) 

-210.4 
(-280.8,-150.4) 

-158.7  
(-219.2,-106.8) 

-146.6  
(-205.1,-96.0) 

-105.7  
(-156.2,-61.2) 

-96.1  
(-144.6,-53.2) 

7 and 
24 

-8.7 
(-47.7,23.0) 

-3.6 
(-41.2,26.7) 

37.1    
(14.3,56.0) 

40.1    
(18.0,58.2) 

19.3   
(-11.6,44.5) 

23.0    
(-6.9,47.2) 

8 and 
25 

-11.5 
(-26.8,2.9) 

-6.2 
(-21.1,7.6) 

10.2    
(-3.3,22.8) 

14.4     
(0.9,26.9) 

31.7    
(18.9,43.5) 

34.9    
(22.1,46.5) 

9 and 
26 

-16.5 
(-27.0,-6.8) 

-11.0 
(-21.4,-1.6) 

7.5    
(-2.9,17.3) 

11.8     
(1.2,21.8) 

26.4    
(15.3,36.8) 

29.8    
(18.4,40.5) 

10 and 
27 

-258.6 
(-359.8,-174.8) 

-265.1 
(-368.5,-179.6) 

-190.1  
(-278.1,-121.4) 

-195.3  
(-286.2,-123.8) 

-130.7  
(-206.0,-72.0) 

-134.9  
(-212.7,-75.1) 

11 and 
28 

57.5 
(47.7,65.3) 

62.0 
(53.5,69.2) 

65.0    
(56.9,72.2) 

68.8    
(61.3,75.2) 

72.2    
(65.0,78.3) 

75.2    
(68.6,80.8) 

12 and 
29 

-44.2 
(-59.1,-31.0) 

-37.4 
(-52.3,-24.3) 

-51.8   
(-70.3,-34.9) 

-44.8   
(-63.6,-27.9) 

-20.8   
(-40.1,-3.1) 

-15.1   
(-34.5,2.7) 

13 and 
30 

48.5 
(43.2,53.7) 

50.9 
(45.8,55.9) 

62.1    
(57.3,66.4) 

63.9    
(59.1,68.2) 

69.9    
(64.9,74.3) 

71.3    
(66.3,75.8) 

14 and 
31 

33.9 
(11.1,52.3) 

37.0 
(15.3,54.6) 

63.3    
(50.4,73.5) 

65.1    
(52.7,74.8) 

70.9    
(59.8,79.2) 

72.2    
(61.6,80.3) 

15 and 
32 

68.7 
(62.0,74.5) 

70.2 
(63.7,75.8) 

81.4    
(77.0,85.1) 

82.2    
(78.1,85.9) 

91.4    
(89.2,93.3) 

91.8    
(89.6,93.6) 

 
Table 14:  Posterior predictive distribution for D2, D2 is the percent reduction crash 
frequency per mile, when comparison a treated site to its youked paired site during 

each of the six periods 
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Chapter 5      Conclusions and discussion 
 
We have analyzed monthly crash data for 30 sites in Iowa, collected over 23 years 
between 1982 and 2004.  Half of the sites were transformed from four to three lanes 
sometime during the study period while the other half (chosen to match the treatment 
sites) remained unchanged. The main objective of the study was to assess the 
effectiveness of the four-to-three lane change in terms of the expected crash frequency 
per mile at the sites.  
 
We adopted a Bayesian approach throughout. A classical analysis could have been 
conducted and would have resulted in similar point estimates for model parameters. 
However, a classical analyst would have encountered some difficulties in estimating 
the variances of parameter estimates in the nonlinear model and would have had to 
resort to asymptotic approximations.  
 
We fitted a hierarchical Poisson regression model to the crash frequency observed at 
each site. The log monthly crash rate per mile at each site was then modeled using a 
piecewise linear regression model with a change-point. The independent variables (or 
explanatory variables) in the change-point regression included the effects of the four 
seasons of the year, treatment, time and interactions of treatment and time. To 
estimate the association between log monthly crash rates and the explanatory 
variables, we added a random effect to account for overdispersion and for 
autocorrelation among observations obtained at the same site. We used proper but 
non-informative priors for all parameters in the model, and carried out all calculations 
using Markov chain Monte Carlo methods implemented in WinBUGS.  
Our model permits accounting for temporal variation in traffic volume (e.g., Hauer, 
1997) and also for the effect of season on crash frequency. 
 
Traffic safety analysts often adopt a negative binomial (NB) model to represent 
number of crashes (e.g., Hauer, 1997; Huang et al., 2002). Marginally, the 
hierarchical Poisson model we chose is almost equivalent to the NB model. It is easy 
to show that a Poisson-Gamma model, in which a Poisson distribution is chosen for 
crash frequency and the expected frequency is in turn modeled using a Gamma 
distribution leads to a NB model marginally for the crash frequency. This can be 
shown by integrating the expected frequency from the joint distribution of observed 
and expected frequency. The resulting marginal distribution has the same form as the 
NB density.  In our case, we modeled the log of the expected rate as a normal random 
variable, therefore assuming that the expected rate is distributed as an exponential-
normal random variable. Thus, the marginal distribution of crash frequency, while not 
exactly NB, has a density that approximates the NB density. 
 
Results suggest that the four-to-three lane conversion can be effective in reducing the 
number of crashes at least at the type of sites included in the Iowa study. The model 
that we fitted is a linear function of the log monthly crash rates at a site with time and 
other covariates and therefore results in an exponential decay of the expected number 
of crashes over time at the site after accounting for the potential effect of factors such 
as season. While we did not conduct a standard test for goodness of fit of the model, 
the estimates of parameters and the corresponding credible sets, as well as the results 
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from posterior prediction at the individual sites and also for average treated and 
control sites suggest that the model is reasonable and fits the data well.  
 
We assessed the effectiveness of the four to three lane conversion by comparing the 
average expected annual crash frequency per mile during years preceding and 
following the conversion at the site level and also as an average over all sites in each 
of the two groups (road diets and comparison sites).  We found that the expected crash 
frequency decreases for both road diets and control sites in the “After” period when 
compared to the “Before” period. The decrease, however, is significantly larger in 
sites that underwent conversion.  These results hold as well when expected crash 
frequency is expressed in a 100,000,000 AADT basis (i.e., when computed on a per 
rate basis).   
 
We computed predictions for the 30 individual sites in the dataset for six selected 
months following the conversion at the treated sites: January and June one, three and 
five years after completion of the four to three-lane change. As expected given the 
estimated posterior distributions for model parameters, the expected number of 
crashes per mile during those months decreases more rapidly at converted sites than at 
control sites. In fact, assuming that the model continues to hold at future times not 
included in the dataset, the expected crash frequency at some converted sites appears 
to decrease rapidly enough to become lower than the expected frequency at the paired 
site even though the reverse was true before the intervention was implemented.   
 
Our results strongly suggest that traffic safety is significantly improved by converting 
four lane roads to three lanes, at least in the State of Iowa and on the type of roads 
considered in this study. This is in contrast to the results reported in Huang et al. 
(2002). They studied crash frequency at several sites in the States of California and 
Washington, and concluded that the difference in reduction of crash frequency 
between road diets (12 sites) and control sites (25 sites) was not statistically 
significant. They included all crashes occurring three years before and three years 
after the conversion and excluded all crashes occurring during what they termed a 
“three-month transition” period. Because reliable AADT data were not available for 
several of the sites, a NB binomial model was fitted to crash frequency at eight road 
diets and 14 comparison sites. The expected frequency was then modeled as a linear 
function of city, site length, traffic volume, time, and treatment. Their results showed 
that while a reduction in crash frequency occurred at all sites, the differences between 
the “before” and “after” frequencies were not statistically distinguishable between 
treatment and control sites. 
 
The differences between our analysis and the analysis performed by Huang et al. 
(2002) are several and may explain the diverging results. First, even the descriptive 
analysis of the “raw” data suggests that the effect of conversion in Iowa roads was 
much more dramatic than in the roads considered in the Huang et al. (2002) study. 
See, for example, the descriptive statistics presented in Table 3 of this report. Second, 
Huang et al. (2002) fitted an ordinary linear regression model to the expected crash 
frequencies, meaning that a single slope for expected frequency on time was assumed 
for the entire study period. We extended the model and allowed for different slopes 
during the “before” and the “after” periods explicitly by including a change-point in 
the model and for the interaction of treatment and slope.  Notice that as a result, our 
model allows for a slight increase in crash frequency during the months immediately 
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preceding the conversion and also during those months immediately following the 
conversion. Finally, we included a longer time series of crash frequencies as we 
included 23 years of data on almost all sites in the study. By analyzing monthly data, 
we were also able to account for seasonal variability in crash frequency and traffic 
volume; while a “must” in Iowa, where seasonal variation in driving conditions is 
marked, this may not be as critical in a study conducted in the northwestern region of 
the country.  
 
And, in our data set, Site 20 behaved abnormal, many zero-valued-crashes time points 
in at this site, and tend to have more crashes after the year 2000. So, to be safe, we 
checked the database, and found that the values before the year 1993 were imaged, 
because before that time, the site doesn’t exist. However, it is easy to rerun 
WinBUGS and to recalculate all the results, and we found that the main conclusions 
still stay unchanged.  
 
It is always possible to improve a statistical model. In our case, we might have 
included additional covariates to help explain the variability in crash numbers across 
sites.  In addition, we could have included interaction terms to account for a 
potentially different effect of treatment on log crashes during the different seasons of 
the year.  One disadvantage of including additional parameters in the model is that 
results become more difficult to interpret and we lose “error degrees of freedom”, 
meaning that all parameters are estimated less precisely. In this study, few 
observations were available for the period after the intervention was completed, so 
adding parameters for which data to estimate the parameters of the second component 
of the piecewise linear model were required might not have been a good idea. 
 
It might be possible to improve on the precision of estimates if more crash data for the 
period following the intervention become available.  The dataset contained very 
abundant information to estimate the parameters of the model pertinent to the first 
component of the piecewise linear regression.  The second component, however is not 
as precisely estimated due to the few years of data available for most sites for the 
period following the four-to-three lane conversion.  
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Appendix I: Gelman-Rubin Statistic Graphs for parameters 
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Appendix II: Autocorr. Statistic Graphs for parameters 
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Appendix III: Kernel Density Graphs for parameters 
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Appendix IV: Time series Graphs for parameters 
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Appendix V: WinBUGS Code 
 
model 
{      for(j in 1 : N) { 
              for(k in 1 : T[j]) { 
                   t[j,k] <- k 
                   log(lambda[j, k]) <-beta[1]+beta[2] * x1[j,k] + beta[3] * t[j,k] 
                   + beta[4] * (t[j,k] - t0[j])*step(t[j,k] - t0[j]) + beta[5]*x1[j,k]*t[j,k] 
                   + beta[6] * (x1[j,k] * (t[j,k] - t0[j])*step(t[j,k] - t0[j])) + beta[7] * x2[j,k]   
                   + beta[8] * x3[j,k] + beta[9] * x4[j,k]+  id[j] 
                   x2[j,k]<-cos(2*pi/4*s[j,k]) 
                   x3[j,k]<-cos(2*pi/4*2*s[j,k]) 
                   x4[j,k]<-sin(2*pi/4*s[j,k])   
                   mu[j,k] <- lambda[j,k] * x0[j,k] / 1000      
                    y[j, k] ~ dpois(mu[j,k]);         
                } 
   id[j]  ~ dnorm(0.0, tau.bw)         
                     } 
             for(i in 1:9) {beta[i] ~dnorm(0, 0.001)} 
             tau.bw~dgamma(0.01,0.01) 
             sigma.bw <- 1 / sqrt(tau.bw) 
} 
 
data  
list(pi=3.1415926535,N=30,T=c(276,276,276,276,276,276,276,276,276,276,276,276,
276,276,276,276,276,276,276,252,276,276,276,276,276,276,276,276,276,276), 
t0=c(138,257,235,235,235,250,198,198,210,220,212,210,211,222,222,138,257,211,2
35,235,250,198,198,210,220,212,210,211,222,222), 
y=structure(.Data=c(...),.Dim=c(30,276)), 
x0=structure(.Data=c(...),.Dim=c(30,276)), 
x1=structure(.Data=c(...),.Dim=c(30,276)), 
s=structure(.Data=c(...),.Dim=c(30,276))) 
 
initials 
list(beta=c(0,0,0,0,0,0,0,0,0), 
tau.bw=1,id=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
list(beta=c(0,-1,0,-1,0,0,0,0,0), 
tau.bw=0.5,id=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 
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